Application Metrics (with Prometheus examples)

A presentation at Dutch PHP Conference in June 2018 in Amsterdam, Netherlands by Rafael Dohms

Slide 1

Slide 1

Application Metrics with Prometheus Rafael Dohms

@rdohms !

Slide 2

Slide 2

How do you do metrics?

Slide 3

Slide 3

“The Prometheus 
 Scientist Method”

Slide 4

Slide 4

I hope not.

Slide 5

Slide 5

jobs.usabilla.com Rafael Dohms Staff Engineer rdohms doh.ms ! !

Slide 6

Slide 6

jobs.usabilla.com Rafael Dohms Staff Engineer rdohms doh.ms ! ! Feedback
Feedback

Slide 7

Slide 7

Kafka / DDD / Autonomous Microservices / Monitoring

Slide 8

Slide 8

Kafka / DDD / Autonomous Microservices / Monitoring

Slide 9

Slide 9

Kafka / DDD / Autonomous Microservices / Monitoring

Slide 10

Slide 10

Metrics are insights into the current state of your application.

Slide 11

Slide 11

Metrics tell you if your service is healthy.

Slide 12

Slide 12

Canary Deploys Oksana Latysheva

Slide 13

Slide 13

Metrics tell you what is wrong.

Slide 14

Slide 14

Metrics tell you what is right.

Slide 15

Slide 15

Metrics tell you what will soon be wrong.

Slide 16

Slide 16

Metrics tell you where to start looking.

Slide 17

Slide 17

Site Reliability Engineering

Slide 18

Slide 18

SLIs " SLOs ◎ SLAs $

Slide 19

Slide 19

SLIs " Service Level Indicators “A quantitative measure of some aspect of your application” The response time of a request was 150ms Source: Site Reliability Engineering - O’Reilly

Slide 20

Slide 20

SLOs ◎ Service Level Objectives “A target value or a range of values for something measured by an SLI” Request response times should be below 200ms Source: Site Reliability Engineering - O’Reilly

Slide 21

Slide 21

Help you drive architectural decisions , like optimisation SLOs ◎ Response time SLO: 150 ms 
 95th Percentile of Processing time (PHP time): 5ms 
 
 As a result we decided to invest more time in exploring the problem domain and not optimising our stack.

Slide 22

Slide 22

SLAs $ Service Level Agreements “An explicit or implicit contract with your customer, that includes consequences of missing their SLOs” The 99th percentile of requests response times should meet our SLO, or we will refund users Source: Site Reliability Engineering - O’Reilly

Slide 23

Slide 23

Measuring

Slide 24

Slide 24

–Etsy Engineering “If it moves, we track it.” https://codeascraft.com/2011/02/15/measure-anything-measure-everything/

Slide 25

Slide 25

Metrics Statistics What is happening right now? How often does this happen? Telemetry

Slide 26

Slide 26

Telemetry “the process of recording and transmitting the readings of an instrument”

Slide 27

Slide 27

Statistics / Analytics “the practice of collecting and analysing numerical data in large quantities”

Slide 28

Slide 28

Statistics / Analytics “the practice of collecting and analysing numerical data in large quantities”

Slide 29

Slide 29

I really miss Ayrton Senna Statistics / Analytics “the practice of collecting and analysing numerical data in large quantities”

Slide 30

Slide 30

Statistics Incoming feedback items with origin information Telemetry response time of public endpoints

Slide 31

Slide 31

“If it moves, we track it.”

Slide 32

Slide 32

Request Latency System Throughput Error Rate Availability Resource Usage “If it moves, we track it.”

Slide 33

Slide 33

Request Latency System Throughput Error Rate Availability Resource Usage “If it moves, we track it.” Incoming Data Peak frequency CPU Memory Disk Space Bandwith node PHP NginX Database

Slide 34

Slide 34

Request Latency System Throughput Error Rate Availability Resource Usage “If it moves, we track it.” Incoming Data Peak frequency CPU Memory Disk Space Bandwith node PHP NginX Database Measure Monitoring Measure measurements

Slide 35

Slide 35

Metrics, Everywhere.

Slide 36

Slide 36

% % % % % % % & & & % % &

Slide 37

Slide 37

SLIs % % % % % % % & & & % % &

Slide 38

Slide 38

Picking good SLIs

Slide 39

Slide 39

SLIs may change according to who is looking at the data.

Slide 40

Slide 40

Understanding the nature of your system

Slide 41

Slide 41

User-Facing 
 serving system? availability, throughput, latency

Slide 42

Slide 42

Storage System? availability, durability, latency

Slide 43

Slide 43

Big Data Systems? throughput, end-to-end latency

Slide 44

Slide 44

User-Facing and Big Data Systems

Slide 45

Slide 45

๏ SLIs

Response time in the “receive” endpoint

Turn around time , from “receive” to “show”.

Individual processing time per step

Data counting: how many , w h a t n a t u r e User-Facing and Big Data Systems

Slide 46

Slide 46

๏ SLIs

Response time in the “receive” endpoint

Turn around time , from “receive” to “show”.

Individual processing time per step

Data counting: how many , w h a t n a t u r e User-Facing and Big Data Systems More relevant to development team

Slide 47

Slide 47

๏ SLIs

Response time in the “receive” endpoint

Turn around time , from “receive” to “show”.

Individual processing time per step

Data counting: how many , w h a t n a t u r e ๏ Other Metrics

node, nginx, php-fpm, java metrics

server metrics: cpu, memor y, disk space

Size of cluster

Kafka health User-Facing and Big Data Systems More relevant to development team

Slide 48

Slide 48

๏ SLIs

Response time in the “receive” endpoint

Turn around time , from “receive” to “show”.

Individual processing time per step

Data counting: how many , w h a t n a t u r e ๏ Other Metrics

node, nginx, php-fpm, java metrics

server metrics: cpu, memor y, disk space

Size of cluster

Kafka health User-Facing and Big Data Systems More relevant to development team More relevant to Infrastructure team

Slide 49

Slide 49

Picking Targets

Slide 50

Slide 50

Target value SLI value

=

target Target Range lower bound

<= SLI value <=

upper bound

Slide 51

Slide 51

Don’t pick a target based on current performance What is the business need? What are users trying to achieve? How much impact does it have on the user experience?

Slide 52

Slide 52

How long can it take between the   user   clicking submit and a confirmation that our servers received the data?

Slide 53

Slide 53

How long can it take between the   user   clicking submit and a confirmation that our servers received the data? ' ' ' ' “Immediate" “We sell as real time” “500ms, too much HTML“ “I don’t know”

Slide 54

Slide 54

How long can it take between the   user   clicking submit and a confirmation that our servers received the data? ' ' ' ' “Immediate" “We sell as real time” “500ms, too much HTML“ “I don’t know” What is human perception of immediate? 100ms Collection API should respond within 150ms

Slide 55

Slide 55

Some, but not too many. can you settle an argument or priority based on it?

Slide 56

Slide 56

Don’t over achieve. The Chubby example.

Slide 57

Slide 57

Adapt.

Evolve. re-define SLO’s as your product evolves.

Slide 58

Slide 58

Meeting Expectations.

Slide 59

Slide 59

Attach consequences to your Objectives .

Slide 60

Slide 60

The night is dark and full of
loopholes . take a friend from legal with you.

Slide 61

Slide 61

Safety Margins. like setting the alarm 5 minutes before the meeting.

Slide 62

Slide 62

Metrics in Practice.

Slide 63

Slide 63

prometheus.io

Slide 64

Slide 64

( ) ( ( Push Model scale this!

Slide 65

Slide 65

( ( ( ) ) ) Pull Model scale this!

Slide 66

Slide 66

Prometheus Telemetry Statistics Prometheus StatsD, InfluxDB, etc… + Long Term Storage

Slide 67

Slide 67

Gauge Histogram Counter Summary Cumulative metric the represents a single number that only increases Samples and count of observations over time A counter, that can go up or down Same as a histogram but with stream of quantiles over a sliding window. * * * * + +

Slide 68

Slide 68

jimdo/ prometheus_client_php

Slide 69

Slide 69

, )

reads from /metrics reads from local storage writes to local storage your code /metrics

Slide 70

Slide 70

<?php use Prometheus\Counter ; use Prometheus\Histogram ; use Prometheus\Storage\APC ; 
 require_once 'vendor/autoload.php' ; $adapter = new APC() ; $histogram = new Histogram( $adapter , 'my_app' , 'response_time_ms' , 'This measures ....' , [ 'status' , 'url' ] , [ 0 , 10 , 50 , 100 ] ) ; $histogram ->observe( 15 , [ '200' , '/url' ]) ; $counter = new Counter( $adapter , 'my_app' , 'count_total' , 'How many...' , [ 'status' , 'url' ]) ; $counter ->inc([ '200' , '/url' ]) ; $counter ->incBy( 5 , [ '200' , '/url' ]) ;

Slide 71

Slide 71

<?php use Prometheus\Counter ; use Prometheus\Histogram ; use Prometheus\Storage\APC ; 
 require_once 'vendor/autoload.php' ; $adapter = new APC() ; $histogram = new Histogram( $adapter , 'my_app' , 'response_time_ms' , 'This measures ....' , [ 'status' , 'url' ] , [ 0 , 10 , 50 , 100 ] ) ; $histogram ->observe( 15 , [ '200' , '/url' ]) ; $counter = new Counter( $adapter , 'my_app' , 'count_total' , 'How many...' , [ 'status' , 'url' ]) ; $counter ->inc([ '200' , '/url' ]) ; $counter ->incBy( 5 , [ '200' , '/url' ]) ;

Slide 72

Slide 72

$adapter

new APC() ; APC / APCu Redis

<?php use Prometheus\Counter ; use Prometheus\Histogram ; use Prometheus\Storage\APC ; 
 require_once 'vendor/autoload.php' ; $histogram = new Histogram( $adapter , 'my_app' , 'response_time_ms' , 'This measures ....' , [ 'status' , 'url' ] , [ 0 , 10 , 50 , 100 ] ) ; $histogram ->observe( 15 , [ '200' , '/url' ]) ; $counter = new Counter( $adapter , 'my_app' , 'count_total' , 'How many...' , [ 'status' , 'url' ]) ; $counter ->inc([ '200' , '/url' ]) ; $counter ->incBy( 5 , [ '200' , '/url' ]) ;

Slide 73

Slide 73

$histogram

new Histogram(

$adapter ,

'my_app' ,

'response_time_ms' ,

'This measures ....' ,

[ 'status' , 'url' ] ,

[ 0 , 10 , 50 , 100 ] ) ; namespace metric name help label names buckets

<?php use Prometheus\Counter ; use Prometheus\Histogram ; use Prometheus\Storage\APC ; 
 require_once 'vendor/autoload.php' ; $adapter = new APC() ; $histogram ->observe( 15 , [ '200' , '/url' ]) ; $counter = new Counter( $adapter , 'my_app' , 'count_total' , 'How many...' , [ 'status' , 'url' ]) ; $counter ->inc([ '200' , '/url' ]) ; $counter ->incBy( 5 , [ '200' , '/url' ]) ;

Slide 74

Slide 74

$histogram ->observe( 15 , [ '200' , '/url' ]) ; measurement label values

<?php use Prometheus\Counter ; use Prometheus\Histogram ; use Prometheus\Storage\APC ; 
 require_once 'vendor/autoload.php' ; $adapter = new APC() ; $histogram = new Histogram( $adapter , 'my_app' , 'response_time_ms' , 'This measures ....' , [ 'status' , 'url' ] , [ 0 , 10 , 50 , 100 ] ) ; $counter = new Counter( $adapter , 'my_app' , 'count_total' , 'How many...' , [ 'status' , 'url' ]) ; $counter ->inc([ '200' , '/url' ]) ; $counter ->incBy( 5 , [ '200' , '/url' ]) ;

Slide 75

Slide 75

$counter

new Counter( $adapter , 'my_app' , 'count_total' , 'How many...' , [ 'status' , 'url' ]) ; namespace metric name help labels

<?php use Prometheus\Counter ; use Prometheus\Histogram ; use Prometheus\Storage\APC ; 
 require_once 'vendor/autoload.php' ; $adapter = new APC() ; $histogram = new Histogram( $adapter , 'my_app' , 'response_time_ms' , 'This measures ....' , [ 'status' , 'url' ] , [ 0 , 10 , 50 , 100 ] ) ; $histogram ->observe( 15 , [ '200' , '/url' ]) ; $counter ->inc([ '200' , '/url' ]) ; $counter ->incBy( 5 , [ '200' , '/url' ]) ;

Slide 76

Slide 76

$counter ->inc([ '200' , '/url' ]) ; $counter ->incBy( 5 , [ '200' , '/url' ]) ;

<?php use Prometheus\Counter ; use Prometheus\Histogram ; use Prometheus\Storage\APC ; 
 require_once 'vendor/autoload.php' ; $adapter = new APC() ; $histogram = new Histogram( $adapter , 'my_app' , 'response_time_ms' , 'This measures ....' , [ 'status' , 'url' ] , [ 0 , 10 , 50 , 100 ] ) ; $histogram ->observe( 15 , [ '200' , '/url' ]) ; $counter = new Counter( $adapter , 'my_app' , 'count_total' , 'How many...' , [ 'status' , 'url' ]) ;

Slide 77

Slide 77

<?php use Prometheus\Counter ; use Prometheus\Histogram ; use Prometheus\Storage\APC ; 
 require_once 'vendor/autoload.php' ; $adapter = new APC() ; $histogram = new Histogram( $adapter , 'my_app' , 'response_time_ms' , 'This measures ....' , [ 'status' , 'url' ] , [ 0 , 10 , 50 , 100 ] ) ; $histogram ->observe( 15 , [ '200' , '/url' ]) ; $counter = new Counter( $adapter , 'my_app' , 'count_total' , 'How many...' , [ 'status' , 'url' ]) ; $counter ->inc([ '200' , '/url' ]) ; $counter ->incBy( 5 , [ '200' , '/url' ]) ;

Slide 78

Slide 78

<?php use Prometheus\RenderTextFormat ; use Prometheus\Storage\APC ; require_once 'vendor/autoload.php' ; $adapter = new APC () ; $renderer = new RenderTextFormat () ; $result = $renderer -> render ( $adapter -> collect ()) ; echo $result ;

Slide 79

Slide 79

$renderer

new RenderTextFormat () ; $result

$renderer -> render ( $adapter -> collect ()) ; echo $result ;

<?php use Prometheus\RenderTextFormat ; use Prometheus\Storage\APC ; require_once 'vendor/autoload.php' ; $adapter = new APC () ;

Slide 80

Slide 80

HELP my_app_count_total How many...

TYPE my_app_count_total counter

my_app_count_total{status="200",url="/url"} 6

HELP my_app_response_time_ms This measures ....

TYPE my_app_response_time_ms histogram

my_app_response_time_ms_bucket{status="200",url="/url",le="0"} 0 my_app_response_time_ms_bucket{status="200",url="/url",le="10"} 0 my_app_response_time_ms_bucket{status="200",url="/url",le="50"} 1 my_app_response_time_ms_bucket{status="200",url="/url",le="100"} 1 my_app_response_time_ms_bucket{status="200",url="/url",le="+Inf"} 1 my_app_response_time_ms_count{status="200",url="/url"} 1 my_app_response_time_ms_sum{status="200",url="/url"} 16 $renderer

new RenderTextFormat () ; $result

$renderer -> render ( $adapter -> collect ()) ; echo $result ;

<?php use Prometheus\RenderTextFormat ; use Prometheus\Storage\APC ; require_once 'vendor/autoload.php' ; $adapter = new APC () ;

Slide 81

Slide 81

–Also Rafael (today) “I’ll just try this live demo again.” http://localhost:9090/graph http://localhost:8180/metrics

–Rafael (yesterday) “Demos always fail.” http://localhost:8180/index

https://github.com/rdohms/talk-app-metrics "

Slide 82

Slide 82

You can’t act on what you can’t see.

Slide 83

Slide 83

Slide 84

Slide 84

Slide 85

Slide 85

Metrics without actionability are just numbers on a screen.

Slide 86

Slide 86

Act as soon as an 
 SLO is threatened .

Slide 87

Slide 87

Thank you. Drop me some 
 feedback at Usabilla 
 and make this talk 
 better. @rdohms 
 http://slides.doh.ms