Building stream processing applications for Apache Kafka using KSQL

A presentation at BigDataLDN in November 2019 in London, UK by Robin Moffatt

Slide 1

Slide 1

Building stream processing applications with Apache Kafka @rmoff #BigDataLDN

Slide 2

Slide 2

STREAM PROCESSING

Slide 3

Slide 3

PROCESSING STREAM

Slide 4

Slide 4

PROCESSING STREAM a of EVENTS

Slide 5

Slide 5

STREAMS ARE of EVENTS EVERYWHERE

Slide 6

Slide 6

A Customer Experience @rmoff #BigDataLDN Building stream processing applications for Apache Kafka using KSQL

Slide 7

Slide 7

@rmoff #BigDataLDN A Sale Building stream processing applications for Apache Kafka using KSQL

Slide 8

Slide 8

A Sensor Reading @rmoff #BigDataLDN Building stream processing applications for Apache Kafka using KSQL

Slide 9

Slide 9

An Application Log Entry @rmoff #BigDataLDN Building stream processing applications for Apache Kafka using KSQL

Slide 10

Slide 10

@rmoff #BigDataLDN Databases Building stream processing applications for Apache Kafka using KSQL

Slide 11

Slide 11

@rmoff #BigDataLDN Immutable event log Building stream processing applications for Apache Kafka using KSQL

Slide 12

Slide 12

@rmoff #BigDataLDN Apache Kafka Producer Connectors Consumer The Log Connectors Streaming Engine Building stream processing applications for Apache Kafka using KSQL

Slide 13

Slide 13

@rmoff #BigDataLDN Apache Kafka Producer Connectors Consumer The Log Connectors Streaming Engine Building stream processing applications for Apache Kafka using KSQL

Slide 14

Slide 14

@rmoff #BigDataLDN The Connect API Producer Connectors Consumer The Log Connectors Streaming Engine Building stream processing applications for Apache Kafka using KSQL

Slide 15

Slide 15

@rmoff #BigDataLDN Streaming Integration with Kafka Connect Amazon S3 syslog Google BigQuery Tasks Workers Kafka Connect Kafka Brokers Building stream processing applications for Apache Kafka using KSQL

Slide 16

Slide 16

@rmoff #BigDataLDN Stream Processing in Kafka Producer Connectors Consumer The Log Connectors Streaming Engine Building stream processing applications for Apache Kafka using KSQL

Slide 17

Slide 17

@rmoff #BigDataLDN Streams of events Time Building stream processing applications for Apache Kafka using KSQL

Slide 18

Slide 18

Stream Processing with KSQL @rmoff #BigDataLDN Stream: widgets Stream: widgets_red Building stream processing applications for Apache Kafka using KSQL

Slide 19

Slide 19

Stream Processing with Kafka Streams @rmoff #BigDataLDN Stream: widgets final StreamsBuilder builder = new StreamsBuilder() .stream(“widgets”, Consumed.with(stringSerde, widgetsSerde)) .filter( (key, widget) -> widget.getColour().equals(“RED”) ) .to(“widgets_red”, Produced.with(stringSerde, widgetsSerde)); Stream: widgets_red Building stream processing applications for Apache Kafka using KSQL

Slide 20

Slide 20

Stream Processing with KSQL @rmoff #BigDataLDN Stream: widgets CREATE STREAM widgets_red AS SELECT * FROM widgets WHERE colour=’RED’; Stream: widgets_red Building stream processing applications for Apache Kafka using KSQL

Slide 21

Slide 21

Stream Processing with KSQL @rmoff #BigDataLDN Source stream Building stream processing applications for Apache Kafka using KSQL

Slide 22

Slide 22

Stream Processing with KSQL @rmoff #BigDataLDN Source stream Building stream processing applications for Apache Kafka using KSQL

Slide 23

Slide 23

Stream Processing with KSQL @rmoff #BigDataLDN Source stream Analytics Applications / Microservices Building stream processing applications for Apache Kafka using KSQL

Slide 24

Slide 24

@rmoff #BigDataLDN KSQL in action 🚀 https://rmoff.dev/kssf19-ksql-code Building stream processing applications for Apache Kafka using KSQL

Slide 25

Slide 25

Code! @rmoff #BigDataLDN https://rmoff.dev/kssf19-ksql-code Building stream processing applications for Apache Kafka using KSQL

Slide 26

Slide 26

MQTT + Kafka + KSQL + Elastic = ❤ @rmoff #BigDataLDN Building stream processing applications for Apache Kafka using KSQL

Slide 27

Slide 27

@rmoff #BigDataLDN Building stream processing applications for Apache Kafka using KSQL

Slide 28

Slide 28

@rmoff #BigDataLDN Building stream processing applications for Apache Kafka using KSQL

Slide 29

Slide 29

@rmoff #BigDataLDN http://confluent.cloud/signup Building stream processing applications for Apache Kafka using KSQL

Slide 30

Slide 30

@rmoff #BigDataLDN Interacting with KSQL 📬 Building stream processing applications for Apache Kafka using KSQL

Slide 31

Slide 31

KSQL - Confluent Control Center @rmoff #BigDataLDN Building stream processing applications for Apache Kafka using KSQL

Slide 32

Slide 32

KSQL - CLI @rmoff #BigDataLDN Building stream processing applications for Apache Kafka using KSQL

Slide 33

Slide 33

KSQL - REST API @rmoff #BigDataLDN Building stream processing applications for Apache Kafka using KSQL

Slide 34

Slide 34

@rmoff #BigDataLDN KSQL operations and deployment 💾 Building stream processing applications for Apache Kafka using KSQL

Slide 35

Slide 35

KSQL in Development and Production Interactive KSQL for development and testing @rmoff #BigDataLDN Headless KSQL for Production REST Desired KSQL queries have been identified “Hmm, let me try out this idea…” Building stream processing applications for Apache Kafka using KSQL

Slide 36

Slide 36

How to run KSQL @rmoff #BigDataLDN DEB, RPM, ZIP, TAR downloads http://confluent.io/ksql Docker images KSQL Server confluentinc/cp-ksql-server confluentinc/cp-ksql-cli (JVM process) …and many more… Building stream processing applications for Apache Kafka using KSQL

Slide 37

Slide 37

Slide 38

Slide 38

@rmoff #BigDataLDN Think Applications, not database instances Building stream processing applications for Apache Kafka using KSQL

Slide 39

Slide 39

@rmoff #BigDataLDN Monitoring KSQL Confluent Control Center JMX https://www.confluent.io/blog/troubleshooting-ksql-part-2 Building stream processing applications for Apache Kafka using KSQL

Slide 40

Slide 40

@rmoff #BigDataLDN http://cnfl.io/book-bundle Building stream processing applications for Apache Kafka using KSQL

Slide 41

Slide 41

@rmoff #BigDataLDN #EOF 💬 Join the Confluent Community Slack group at http://cnfl.io/slack https://talks.rmoff.net

Slide 42

Slide 42

@rmoff #BigDataLDN Related Talks •The Changing Face of ETL: Event-Driven Architectures for Data Engineers •Apache Kafka and KSQL in Action : Let’s Build a Streaming Data Pipeline! • 📖 Slides • 📖 Slides • 📽 Recording • 👾 Code • 📽 Recording •ATM Fraud detection with Kafka and KSQL • 📖 Slides •No More Silos: Integrating Databases and Apache Kafka • 👾 Code • 📖 Slides • 📽 Recording • 👾 Code (MySQL) • 👾 Code (Oracle) •Embrace the Anarchy: Apache Kafka’s Role in Modern Data Architectures • 📽 Recording • 📖 Slides • 📽 Recording Building stream processing applications for Apache Kafka using KSQL

Slide 43

Slide 43

Bonus content!

Slide 44

Slide 44

@rmoff #BigDataLDN KSQL in action 🚀 Building stream processing applications for Apache Kafka using KSQL

Slide 45

Slide 45

@rmoff #BigDataLDN Filtering with KSQL ORDERS Building stream processing applications for Apache Kafka using KSQL

Slide 46

Slide 46

@rmoff #BigDataLDN Filtering with KSQL ORDERS KSQL CREATE STREAM ORDERS_NY AS SELECT * FROM ORDERS WHERE ADDRESS->STATE=’New York’; Building stream processing applications for Apache Kafka using KSQL

Slide 47

Slide 47

@rmoff #BigDataLDN Filtering with KSQL ORDERS KSQL CREATE STREAM ORDERS_NY AS SELECT * FROM ORDERS WHERE ADDRESS->STATE=’New York’; ORDERS_NY Building stream processing applications for Apache Kafka using KSQL

Slide 48

Slide 48

Schema manipulation with KSQL ORDERS @rmoff #BigDataLDN { “ordertime”: 1560070133853, “orderid”: 67, “itemid”: “Item_9”, “orderunits”: 5, “address”: { “street”: “243 Utah Way”, “city”: “Orange”, “state”: “California” } } Building stream processing applications for Apache Kafka using KSQL

Slide 49

Slide 49

Schema manipulation with KSQL @rmoff #BigDataLDN { “ordertime”: 1560070133853, “orderid”: 67, “itemid”: “Item_9”, “orderunits”: 5, “address”: { “street”: “243 Utah Way”, “city”: “Orange”, “state”: “California” } } ORDERS_NO_ADDRESS_DATA AS ORDERS KSQL CREATE STREAM SELECT ORDERTIME, ORDERID, ITEMID, ORDERUNITS FROM ORDERS; Building stream processing applications for Apache Kafka using KSQL

Slide 50

Slide 50

Schema manipulation with KSQL @rmoff #BigDataLDN { “ordertime”: 1560070133853, “orderid”: 67, “itemid”: “Item_9”, “orderunits”: 5, “address”: { “street”: “243 Utah Way”, “city”: “Orange”, “state”: “California” } AS ORDERS_NO_ADDRESS_DATA } ORDERS KSQL CREATE STREAM SELECT TIMESTAMPTOSTRING(ROWTIME, ‘yyyy-MM-dd HH:mm:ss’) AS ORDER_TIMESTAMP, ORDERID, ITEMID, ORDERUNITS FROM ORDERS; ORDERS_NO_ADDRESS_DATA { “order_ts”: 1560070133853, “orderid”: 67, “itemid”: “Item_9”, “orderunits”: 5 } Building stream processing applications for Apache Kafka using KSQL

Slide 51

Slide 51

Schema manipulation with KSQL @rmoff #BigDataLDN { ORDERS } “ordertime”: 1560070133853, “orderid”: 67, “itemid”: “Item_9”, “orderunits”: 5, “address”: { “street”: “243 Utah Way”, “city”: “Orange”, “state”: “California” } Building stream processing applications for Apache Kafka using KSQL

Slide 52

Slide 52

Schema manipulation with KSQL ORDERS KSQL @rmoff #BigDataLDN { “ordertime”: 1560070133853, “orderid”: 67, “itemid”: “Item_9”, “orderunits”: 5, “address”: { “street”: “243 Utah Way”, “city”: “Orange”, “state”: “California” } CREATE STREAM ORDERS_FLAT AS SELECT […] } ADDRESS->STREET AS ADDRESS_STREET, ADDRESS->CITY AS ADDRESS_CITY, ADDRESS->STATE AS ADDRESS_STATE FROM ORDERS; Building stream processing applications for Apache Kafka using KSQL

Slide 53

Slide 53

Schema manipulation with KSQL @rmoff #BigDataLDN { ORDERS KSQL “ordertime”: 1560070133853, “orderid”: 67, “itemid”: “Item_9”, “orderunits”: 5, “address”: { “street”: “243 Utah Way”, “city”: “Orange”, “state”: “California” } CREATE STREAM ORDERS_FLAT AS SELECT […] } ADDRESS->STREET AS ADDRESS_STREET, ADDRESS->CITY AS ADDRESS_CITY, ADDRESS->STATE AS ADDRESS_STATE FROM ORDERS; ORDERS_FLAT {“ordertime”: 1560070133853, “orderid”: 67, “itemid”: “Item_9”, “orderunits”: 5, “address-street”: “243 Utah Way”, “address-city”: “Orange”, “address-state”: “California”} Building stream processing applications for Apache Kafka using KSQL

Slide 54

Slide 54

Reserialising data with KSQL ORDERS @rmoff #BigDataLDN {“ordertime”: 1560070133853, “orderid”: 67, “itemid”: “Item_9”, “orderunits”: 5, “address-street”: “243 Utah Way”, “address-city”: “Orange”, “address-state”: “California”} Building stream processing applications for Apache Kafka using KSQL

Slide 55

Slide 55

@rmoff #BigDataLDN Reserialising data with KSQL ORDERS KSQL {“ordertime”: 1560070133853, “orderid”: 67, “itemid”: “Item_9”, “orderunits”: 5, “address-street”: “243 Utah Way”, “address-city”: “Orange”, “address-state”: “California”} CREATE STREAM ORDERS_CSV WITH (VALUE_FORMAT=’DELIMITED’) AS SELECT * FROM ORDERS_FLAT; Building stream processing applications for Apache Kafka using KSQL

Slide 56

Slide 56

@rmoff #BigDataLDN Reserialising data with KSQL ORDERS KSQL {“ordertime”: 1560070133853, “orderid”: 67, “itemid”: “Item_9”, “orderunits”: 5, “address-street”: “243 Utah Way”, “address-city”: “Orange”, “address-state”: “California”} CREATE STREAM ORDERS_CSV WITH (VALUE_FORMAT=’DELIMITED) AS SELECT * FROM ORDERS_FLAT; ORDERS_CSV 1560045914101,24644,Item_0,1,43078 De 1560047305664,24643,Item_29,3,209 Mon 1560057079799,24642,Item_38,18,3 Autu 1560088652051,24647,Item_6,6,82893 Ar 1560105559145,24648,Item_0,12,45896 W 1560108336441,24646,Item_33,4,272 Hef 1560123862235,24641,Item_15,16,0 Dort 1560124799053,24645,Item_12,1,71 Knut Building stream processing applications for Apache Kafka using KSQL

Slide 57

Slide 57

Lookups and Joins with KSQL ORDERS @rmoff #BigDataLDN {“ordertime”: 1560070133853, “orderid”: 67, “itemid”: “Item_9”, “orderunits”: 5} Building stream processing applications for Apache Kafka using KSQL

Slide 58

Slide 58

Lookups and Joins with KSQL @rmoff #BigDataLDN { “id”: “Item_9”, “make”: “Boyle-McDermott”, “model”: “Apiaceae”, “unit_cost”: 19.9 ITEMS ORDERS } {“ordertime”: 1560070133853, “orderid”: 67, “itemid”: “Item_9”, “orderunits”: 5} Building stream processing applications for Apache Kafka using KSQL

Slide 59

Slide 59

@rmoff #BigDataLDN Lookups and Joins with KSQL { “id”: “Item_9”, “make”: “Boyle-McDermott”, “model”: “Apiaceae”, “unit_cost”: 19.9 ITEMS } ORDERS KSQL CREATE STREAM ORDERS_ENRICHED AS SELECT O., I., O.ORDERUNITS * I.UNIT_COST AS TOTAL_ORDER_VALUE, FROM ORDERS O INNER JOIN ITEMS I ON O.ITEMID = I.ID ; {“ordertime”: 1560070133853, “orderid”: 67, “itemid”: “Item_9”, “orderunits”: 5} Building stream processing applications for Apache Kafka using KSQL

Slide 60

Slide 60

@rmoff #BigDataLDN Lookups and Joins with KSQL { “id”: “Item_9”, “make”: “Boyle-McDermott”, “model”: “Apiaceae”, “unit_cost”: 19.9 ITEMS } ORDERS KSQL CREATE STREAM ORDERS_ENRICHED AS SELECT O., I., O.ORDERUNITS * I.UNIT_COST AS TOTAL_ORDER_VALUE, FROM ORDERS O INNER JOIN ITEMS I ON O.ITEMID = I.ID ; {“ordertime”: 1560070133853, “orderid”: 67, “itemid”: “Item_9”, “orderunits”: 5} ORDERS_ENRICHED { } “ordertime”: 1560070133853, “orderid”: 67, “itemid”: “Item_9”, “orderunits”: 5, “make”: “Boyle-McDermott”, “model”: “Apiaceae”, “unit_cost”: 19.9, “total_order_value”: 99.5 Building stream processing applications for Apache Kafka using KSQL

Slide 61

Slide 61

@rmoff #BigDataLDN Connecting to other systems with Kafka Connect KSQL CREATE STREAM ORDERS_ENRICHED AS SELECT […] FROM ORDERS O INNER JOIN ITEMS I ON O.ITEMID = I.ID ; Kafka Connect Building stream processing applications for Apache Kafka using KSQL

Slide 62

Slide 62

@rmoff #BigDataLDN Stateful Aggregation with KSQL ORDERS Building stream processing applications for Apache Kafka using KSQL

Slide 63

Slide 63

@rmoff #BigDataLDN Stateful Aggregation with KSQL ORDERS SELECT MAKE, COUNT(*) AS ORDER_COUNT FROM ORDERS_ENRICHED GROUP BY MAKE; Building stream processing applications for Apache Kafka using KSQL

Slide 64

Slide 64

@rmoff #BigDataLDN Stateful Aggregation with KSQL ORDERS SELECT MAKE, COUNT(*) AS ORDER_COUNT FROM ORDERS_ENRICHED GROUP BY MAKE; Building stream processing applications for Apache Kafka using KSQL

Slide 65

Slide 65

@rmoff #BigDataLDN Transform data with KSQL - merge streams ORDERS US US UK ORDERS_UK UK Building stream processing applications for Apache Kafka using KSQL

Slide 66

Slide 66

@rmoff #BigDataLDN Transform data with KSQL - merge streams ORDERS US US INSERT INTO ORDERS_COMBINED SELECT ‘US’ AS SOURCE, ORDERTIME, ITEMID, ORDERUNITS, ADDRESS FROM ORDERS; UK ORDERS_UK UK INSERT INTO ORDERS_COMBINED SELECT ‘UK’ AS SOURCE, ORDERTIME, ITEMID, ORDERUNITS, ADDRESS FROM ORDERS_UK; Building stream processing applications for Apache Kafka using KSQL

Slide 67

Slide 67

@rmoff #BigDataLDN Transform data with KSQL - merge streams ORDERS US UK US INSERT INTO ORDERS_COMBINED SELECT ‘US’ AS SOURCE, ORDERTIME, ITEMID, ORDERUNITS, ADDRESS US FROM ORDERS; ORDERS_UK UK UK UK INSERT INTO ORDERS_COMBINED SELECT ‘UK’ AS SOURCE, ORDERTIME, ITEMID, ORDERUNITS, ADDRESS US FROM ORDERS_UK; ORDERS_COMBINED Building stream processing applications for Apache Kafka using KSQL

Slide 68

Slide 68

@rmoff #BigDataLDN Transform data with KSQL - split streams US UK UK US ORDERS_COMBINED Building stream processing applications for Apache Kafka using KSQL

Slide 69

Slide 69

@rmoff #BigDataLDN Transform data with KSQL - split streams US UK CREATE STREAM ORDERS_US AS SELECT * FROM ORDERS_COMBINED WHERE SOURCE =’US’; UK US ORDERS_COMBINED CREATE STREAM ORDERS_UK AS SELECT * FROM ORDERS_COMBINED WHERE SOURCE =’UK’; Building stream processing applications for Apache Kafka using KSQL

Slide 70

Slide 70

@rmoff #BigDataLDN Transform data with KSQL - split streams US UK CREATE STREAM ORDERS_US AS SELECT * FROM ORDERS_COMBINED WHERE SOURCE =’US’; US US ORDERS_US US UK ORDERS_COMBINED CREATE STREAM ORDERS_UK AS SELECT * FROM ORDERS_COMBINED WHERE SOURCE =’UK’; UK UK ORDERS_UK Building stream processing applications for Apache Kafka using KSQL